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Patterns of Energy Levels and Spectra for 
Polyatomic Molecules 

William G. Harter 1,2 

1. INTRODUCTION 

Laser spectroscopy has revealed a remarkable intricacy in the rotational, 
vibrational, and electronic energy levels for polyatomic molecules. The 
infrared spectra of SF6, (1-1~ CF4, (11'12) and related molecules contain 
several levels of structure on top of structure which resembles a fractal in 
some ways. The purpose of this paper will be to exhibit some of this 
structure and introduce the simplest theoretical interpretations of it which are 
presently available. (~ 3) 

The theoretical interpretations are based upon quantum and 
semiclassical models for the dynamics of angular momenta for electronic and 
nuclear orbits and spins. The models show that very complex spectra can be 
understood in terms of comparatively simple nonlinear classical rotational 
dynamics combined with certain quantum tunneling processes. ~14'~5) The 
time scales for the classical and quantum motions vary over many orders of 
magnitude, and this accounts for the intricate structure of the molecular 
spectra. 

Figure 1 represents an attempt to exhibit the complex spectral structure 
which can be seen using modern laser technology. Not too many years ago 
all this structure would have shown up only as a unresolved "landscape" on 

a n  infrared spectral trace, and it might have been called a vibrational "line" 
or "resonance." However, is quite clear from Fig. 1 that this "line" is 
actually made of many "sublines." Indeed, these lines contain lines which 
contain finer lines and so forth to yield a complex pattern with literally 
thousands of resonances. 

One wonders what the S F  6 molecules could be doing to make all these 
spectral features. The designation "v4" refers to a particular type of dipole- 
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active vibrational motion of the SF 6 molecule. All of the v4-spectral features 
in Fig. 1 correspond to an excitation of this vibration in one way or another. 
Still one wonders: Why can a v 4 vibration be excited in so many different 
ways? 

Much more clearly defined answers to such questions come out of a 
new approach to the study of rotations and angular momentum states of 
polyatomic molecules. ~16) It was already known that the features in Fig. 1 
correspond to transitions between states with different combinations or 
arrangements of angular momenta in the molecule. However, prevailing 
theories for spectroscopy lacked a clear geometric picture of how these 
angular momenta were arranged in each state, and there was no way to 
relate the complex spectra to a well-defined dynamics for the molecule. 

There are three types of angular momentum involved in the v 4 spectra. 
First, there are the angular momenta labeled R, J, or F associated with the 
overall rotation of the SF 6 molecule. Second, there is the vibrational angular 
momentum l associated with the eccentric or crankshaft-like motion of the v4 
vibration. (14) Third, there is the total nuclear spin angular momentum I due 
to the six F nuclei which each have spin-I/2. The sum of the momentum R 
of the molecular rotor and the momentum l of the vibrator is the total 
mechanical momentum 

J = R + I  (1.i) 

The overall total angular momentum 

F = J + L = R + / + I  (1.2) 

includes that of the nuclear spins, as well. 
The new approach to the theory of rotational spectra is based upon the 

concept of the rotational energy (RE) surface as developed by Harter and 
Patterson. (13'14) In the following section this approach will be introduced for 
the simplest case in which vibrational and nuclear spin angular momentum 
effects are neglected (R = J = F). This will allow a simple explanation of the 
spectral fine and superfine structures or cluster patterns which appear in 
Fig. lb and c. Subsequent sections will show how these patterns are modified 
by other mechanisms such as Coriolis interaction with the vibrational 
momentum, higher-order tensor Hamiltonians, and nuclear spin effects. The 
effects of electronic spin and orbital coupling are not considered here, but it 
appears that they should be treated similarly. 
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2. ROTATIONAL ENERGY SURFACES AND SPECTRAL CLUSTERS 

For molecules having a cubic, octahedraI, or tetrahedral structure the 
following Hamiltonian form due to Hecht ~17) has been extremely useful for 
modeling their rotational spectra: 

H=BJZ + 10/0441j4 _}_ j4y q_jz 4 _ (3/5) j4] (2.1) 

The first term represents the rotational energy of a spherical top whose 
moment of intertia is I =  1/(2B). The second term represents centrifugal 
distortion as explained below. The distortion term is the lowest degree 
polynomial in the angular momentum operators (JxJyJ~) having cubic 
symmetry without also having spherical symmetry. (The second degree 
polynomial j2 z ~ 2 =Jx-}-Jy q-Jz in the first term obviously has spherical 
symmetry as well as cubic symmetry.) 

The standard approach for solving Hamiltonians such as (2.1) involves 
rewriting them in terms of Racah tensors Tq ~. Following Hecht, ~ one 
rewrites the fourth-degree cubic part as follows: 

j4 + j4 + j4 _ (3 /5 ) J '  = (2j4/5)[T~ + (5/14)UZ(T] + T4_4)1 (2.2) 

This is done so that matrix elements in an angular momentum basis can be 
derived easily using the Wigner-Eckart theorem: 

(~', I T~I ~) = -q  K,,',-- r k s  s ' / / '  II k IIJ) (2.3) 

However, since most state for heavy polyatomic molecules involve high 
angular quanta (J/> 10) this approach becomes computationally laborious 
since many large matrices must be diagonalized numerically by computer. 
Also, the physical interpretation of the results of the diagonalizations are 
generally obscured, and important physical effects may be unnoticed or 
unexplained. 

Computer diagonalization studies by Lea, Leask, and Wolf, ~8) Dorney 
and Watson, ~9) and Fox, Galbraith, Krohn, and Louck ~2~ revealed a 
complex yet surprisingly orderly cluster structure of the rotational energy 
levels. The first detailed explanation of the superfine structure of clusters was 
given by Harter and Patterson. (~5'21) A much clearer explanation can be 
made by introducing the concept of the rotational energy surface. (13) 

To obtain the rotational energy surface of a Hamiltonian such as (2.1) 
it is only necessary to plot it in an angular momentum polar coordinate 
system (fl, 7) defined by the following: 

Jx = - J  sin fl cos 

Jy = J sin fl sin 7 (2.4) 

Jz = J c o s  
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Here the angles ( - f l )  and ( - 7 )  are the polar angles and azimuth, respec- 
tively, of  the classical angular momentum vector J = ( J x J y J z )  in the body 
frame of  the molecule. The negative sign in this definition is convenient since 
the sense of  rotation for the body frame is the reverse of  that for the 
laboratory. Then angles +fl and +7 are two of  the conventionally defined 
Euler angles (a, fl, 7) as explained in Ref. 13. 

Using (2.4) to rewrite the Hamiltonian (2.1) one obtains 

H = B J  2 + t044J4(35 C O S  4 / ~  - -  30 cos 2 fl + 5 sin 4 fl cos 47 + 3)/2 (2.5) 

The polar plot of  this function is shown by the surface in Fig. 2 for 
appropriate values of  the constants B and /044. (The location of  features on 
the surface is independent of  the values of  these constants). One should 
remember that the energy is being plotted radially outward or upward. The 

(/ 

KEY: 

!Jz 
f 

/ ,) 

I 
b J-tra jectory x Fixed point 

. . . .  E-sphere . . . .  Separatr ix 

Fig. 2. The rotational energy (RE) surface for the S F  6 molecule. The rotationally energy is 
plotted radially as a function of the direction of the angular momentum J. Topography lines 
correspond to trajectories of the J vector precessing in the molecular frame with constant 
rotational energy. (At the same time J is a constant vector in the laboratory frame.) Dotted 
lines indicate separatrices, and dashed lines are constant energy tunneling paths on the E 
sphere. 
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radius of each point on the rotational energy (RE) surface represents the 
rotational energy obtained for the particular angular momentum direction 
(-f l , - -~)  subject to the constraint that the magnitude J of the angular 
momentum is constant. It is often convenient to take unit values for J, i.e., to 
let 

j =  (jz + j~ + jz)l/z = 1 (2.6) 

when plotting the classical surfaces. 
It is useful to understand why the surface in Fig. 2 has peaks along the 

x, y, or z axes and valleys in between. It is helpful to imagine an octahedral 
S F  6 molecule with the S-F bonds along the same x, y, and z axes as Fig. 2. 
It often happens that an RE surface has a shape that is roughly similar to the 
molecule it is supposed to represent. [However, one should not forget that 
the RE surface exists in an energy-angular momentum space (E, J), only.] If 
the S F  6 molecule rotates around the (100) directions (i.e., x, y, and z axes) it 
will be centrifugally distorted less than by rotation with the same J around 
(111) directions in between. This is because the radial S-F bonds are several 
times stronger than the F - F  "bonds." Since centrifugal force acts perpen- 
dicular to the rotation axis or J vector, it will be more effective when J is not 
along the S-F axes but in between them. Greater distortion corresponds to 
greater effective rotational inertia and less energy, and so the RE surface has 
valleys on the (111) axes. 

Therefore the RE surface is an effective energy surface that is supposed 
to account for the inertial deployment and shifting of cargo on board the 
molecule, as it rotates in space. It provides an efficient way to show the 
consequences of conservation of angular momentum (J) and energy (H). The 
constancy of J is implicit in the construction of the RE surface, and 
constant-H loci simply correspond to topography lines in Fig. 2. Since 
energy is plotted radially, the angular momentum vector J must lie along the 
intersections of an RE surface for a given J and an energy sphere for a 
given H. In the absence of external torque, the J vector must remain fixed in 
magnitude and direction in the laboratory, but in the body frame its direction 
(but not magnitude) will change as it moves along an RE surface topography 
line. This motion corresponds to an overall precesion or nutation of the 
molecule. 

The speed or frequency of the precessional motion is determined by the 
gradient or slope of the energy surface. For each J vector position there is an 
angular velocity vector given by Hamilton's equation 

~H 
~ =  oJ (2.7) 
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and this determines the speed of J in the rotating body frame: 

J = x a (2.8) 

For qualitative purposes the following left-handed mnemonic is sufficient: the 
J vector precesses clockwise around RE surface maxima (left thumb up) and 
counterclockwise around minima. (The same rule applies to wind direction 
around highs or lows in the northern hemisphere.) The arrows on the 
topography lines in Fig. 2 indicate the directions of precession for each J- 
vector trajectory. 

One of the most powerful features of an RE surface picture is that 
trajectories on the surface can often be related to quantum energy levels and 
spectral fine structure. In Fig. 3 the trajectories shown in Fig. 2 are 
associated with energy levels of SF 6 in the J = R  = 30 vibrational ground 
state manifold. More precisely, the trajectories are associated with clusters of 
energy levels where the number of rotational levels in a given cluster equals 
the number of equivalent but distinct classical trajectories. For example, the 
third highest trajectories (...these are marked with arrows in the upper-right- 
hand side of Fig. 3) are associated with the third highest cluster of levels. 
The third circle from the lower-left-hand side of Fig. 3 displays a highly 
magnified view of a cluster of levels labeled E, T 1, and A 1. This cluster 
contains six levels altogether, as explained below. 

The appearance of clusters in molecular spectra was one of the 
surprising revelations provided by modern laser spectroscopy. ~2~ Previously, 
the well-known group theory of quantum energy levels, established by 
Wigner and developed in dozens of textbooks, was supposed to account for 
all degeneracy due to symmetry of quantum energy levels. For example, 
levels labeled by octahedral symmetry species E and T1 (or T2) were 
understood to be doubly and triply degenerate, respectively, while species A~ 
(orA2) labeled single nondegenerate levels. A coincidence of any two or 
more symetry species in the absence of higher symmetry was often referred 
to as an "accidental degeneracy." 

However, the near degeneracies of two-, three-, or four-symmetry 
species in the clusters indicated by Fig. 3 are clearly not accidents. In fact, 
the patterns of energy levels provide a direct comparison of classical vs. 
quantum mechanical behavior. The clusters are associated with a classical 
(or semiclassical) degeneracy of equivalent but disjoint trajectories for 
angular momentum precession. For example, each trajectory around one of 
the fourfold (C4) symmetric peaks has the same energy as an equivalent one 
on each of the other five peaks. Each set of six classical trajectories 
corresponds to one of the C 4 clusters on the lower-right-hand side of Fig. 3. 
Each C4 cluster has six rotational sublevels in the form of a (Tj T2) or an 
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V I S U A L I Z I N G  T H E  J - - : 5 0  

L E V E L S  O F  A 

S P H E R I C A L  

:m=4.SHz 

z \ / ~, , x / , / 

I OXlOcm cSrn i 

O~C~ C lus te rs  . �9 0~'C4 C l u s t e r s  
- . I  , -~ f  , -2L :, -,I , L , I, , 12 , I~ , J4 , Ls 

i Relotive Units of 10-4cm-n=3.0MHz 
84,70719 

c m - I  

Fig. 3. Rotational energy level clusters of  SF 6 for J =  30 are associated with RE surface 
trajectories of  the precessing J vector. (After Ref. 13.) Rotational constants are 
B = 0.091083 c m -  1 and t044 = 5.44 Hz. Spectrum is relative to BJ(J + 1). 
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(ATE) combination. On the right-hand side of Fig. 3 there are eight 
equivalent copies of each classical trajectory near the bottoms of threefold 
(C3) symmetric valleys. Each set of eight corresponds to the same number of 
sublevels within C 3 clusters (A 1T 1T2A2) or (T1ET2). 

The spacing and splitting of the clusters provides a direct measurement 
for the rates of classical versus quantum angular momentum dynamics. The 
rates for classical precessional motion are proportional to the intercluster 
spacing such as the (1.8 • 10 .4 cm -1 = 5.3 MHz) interval between the top 
two clusters in Fig. 3. The rates for quantum tunneling are proportional to 
the intracluster splitting such as the (1.6 • 10 -1~ cm -1 = 4.8 Hz) splitting of 
the top cluster in Fig. 3. Note that the classical precessional frequency for 
the top cluster is about a million times faster than the quantum tunneling 
frequency. This quantum tunneling frequency represents the rate for a 
classically impossible feat in which the molecule jumps from one equivalent 
precessional trajectory to another. 

Intercluster spacing in called fine structure splitting while the 
intracluster splitting is called superfine structure splitting. Generally, the 
splitting of superfine structure is much finer than that of the "fine" structure 
since the corresponding quantum tunneling is much slower than the classical 
precession. However, if the different classical trajectories have points that are 
sufficiently near one another, then the quantum tunneling may become as 
rapid as the classical precession. This happens in what is called the 
separatrix or saddle point region of the energy space. 

The dotted curves on the RE surface in Fig. 2 or 3 are called 
separatrices, and the separatrix segments connect saddle points. These dotted 
curves are called separatrices since they separate nearby trajectories which 
precess around different axes, and they lie on an energy sphere that passes 
through the saddle points. Equivalent but distinct trajejctories with energies 
slightly above or below the separatrix energy will form avoided crossings at 
each saddle point. In the neighborhood of the saddle point, the speed of the 
classical precession will be greatly reduced since the RE surface slope is 
nearly zero. However, the quantum tunneling will be greatly enhanced near 
these avoided crossings. Energy level clusters near the separtrix energy will 
have vanishing fine structure splitting since the classical precession rates are 
vanishing, but the tunneling frequency will suddenly blow up. In other words 
the cluster structure is completely melted away at the separatrix energy as 
can be seen in Fig. 3. The dynamics of a molecule near the separatrix energy 
may be extremely complicated and very sensitive to initial conditions. This 
has to be so since the separatrix marks the point where the molecule switches 
from C3-type clusters and valley precession to a completely different C4-type 
cluster and precession around peaks. 

The C3-cluster-separatrix-C4-cluster structure is clearly visible in high- 
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resolution spectra. Probably the clearest and most beautiful examples so far 
are shown in laser spectra taken by Alan Pine (22) from cubane (C8H8). A 
( J =  36) example is shown in Fig. 4; it has a structure similar to that of 
( J =  30) levels in Fig. 3. The relative heights of the absorption peaks are 
determined by Pine from nuclear spin degeneracy and not simply by 
counting A, T, and E rotational degeneracies. A simple method for deriving 
X Y  6 and XY 8 spin states was given by Harter and Patterson (x6'23) and will 
be described briefly later. 

In Fig. lb there is an example of a J =  88 fine structure manifold of 
clusters with the details of the superfine structure shown below it in Fig. lc. 
It is worth noting that Figs. 1 and 4 represent quantum transitions in 
vibrational spectra involving the rotational levels in Fig. 3. It will be shown 
in Section 5.2 that the relevant rotational energy surfaces for vibrationally 
excited states with large Coriolis interactions can have the same shapes as 
the basic surface shown in Fig. 2. In this case spectral structure is similar to 
level structure. 

Before describing other types of RE surfaces we shall briefly mention an 
elementary semiclassical calculation of C4-type fine and superfine energy 
levels. (13) This uses an Euler angle adaption of Bohr's original action quan- 
tization rule 

2r~ 
A. = ~  J~(E.)d7 = 2~cn, n = J , J -  1 .... (2.9) 

~o 

CUBANE: CsHs "V12 C-C Stretch 

R(36) 

27 27 

33 E 33 

6 6  2 1 F 2 + F  ~ 
80 70 

F I + E + F  2 E+F2+A2  A I + F I + E  

60 66 
E~-F2-~A = F2"~'F I 70 

A 1 -~-F I-I'E 

96 

A2 JrF2 "~-F 1 -~-A 1 

Spectrum by Alan Pine of cubane C s H  8 vlz vibrational transition R(36). (See Fig. 4. 
Ref. 22.) Threefold clusters are separated from fourfold clusters by an uneven spectral 
separatrix region. Note that F symmetry labels in the figure are the same as T labels in the 
text. 
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where .ly = J~ is the component of J about the C 4 axis of quantization found 
by solving (2.4) and (2.5), i.e., 

j~c= 1/2(COS4 Y + sin4 Y) + [e(COSa Y + sin4 Y + cos47 + sin4 y +l)--J4(c~ 

where 

e = (E -- B J  2 + 3J4 /5 ) /10  to4 4 

(2.10a) 

(2.10b) 

For more accurate results one uses the quantum expectation values for 
angular momentum magnitudes, i.e., j2_+j(j+ 1) and j4__+ [j(j+ 1)]2. 

One varies the energy until the quantization condition (2.9) is satisfied. 
For J =  30 one obtains E n = 5.29, 3.53, 2.03, 0,79, -0.22,._ in units of 
10 -4 cm -1. These compare well with the exact values of 5.31, 3.54, 2.04, 
0.80, -0 .20  .... obtained by the lengthy procedure of numerical 
diagonalization. Note the classical precessional frequency (vc) is given by the 
well-known action derivative formula. 

= ( S A , ) - ~  A E  An  A E  (for A n =  1) (2.11) 
vc \ B E ,  / - A n  A A  - h 

This confirms the relation between v c and fine structure splitting A E .  

The superfine splitting is determined by a tunneling amplitude 

S = Vc e - I~  

where 

(2.12) 

0 = fpath J;(E.) dr (2.13) 

is an integral over a saddle point. An example of such a path is the dashed 
path connecting the top C 4 trajectories around the Jx and Jy axes in Fig. 2. 
The limits of the tunneling integral are the closest approach points on the 
quantizing trajectories connected by a path. The tunneling amplitudes S 
appear in a tunneling matrix 

(i ~ s) x00 O E S S S S (-100) 
S E 0 S S (010) 

< H ) =  S 0 E S S (0--10) (2.14) 

s s s E 0 (001) 
S S S 0 E (00-1) 
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which connects the six equivalent C 4 trajectories that have energy E around 
the axes {(100), (-100),...}. The eigenvalues 

hal = E + 4S, h r ' = E ,  h~ = E -  2S (2.15) 

of this matrix determine the superfine structure. Note that the T1 level is 
twice as far from the A1 level as the E level. This is what is observed in 
(ATE) clusters in spectra such as Figs. 1-4 where "nearest-neighbor" 
tunneling is the dominant quantum process. Other tunneling processes are 
discussed in Ref. 15. 

3. SYMMETRY ANALYSIS FOR CLUSTERS OR 
SUPERFINE STRUCTURE 

The symmetry analysis for spectral clusters may seem at first to be a little 
peculiar. Normally one expects a reduction in symmetry to cause the 
splitting of degenerate energy levels. For example, consider a reduction of 
cubic-octahedral (O) symmetry to C 4 symmetry by applying a z-magnetic 
field. This should cause the Zeeman splitting of the triply degenerate T 1 level 
into three levels of m = 1, 0, and -1 .  (The T 1 state is like an I = 1 p-type 
atomic orbital.) 

Now a classical C4-type cluster state with negligible tunneling also 
represents a reduction in symmetry if the molecule is stuck precessing on one 
of six C4-symmetric trajectories. The molecule is adiabatically distorted from 
a perfect octahedron into something which really has no symmetry at all. At 
best it has a dynamical symmetry associated with a particular representation 
of the local C 4 symmetry of a single trajectory. However, the effect of this 
symmetry breaking on the spectrum is opposite to that of the Zeeman effect. 
Now the levels unsplit or cluster instead of splitting. 

The difference is that in the Zeeman example the symmetry of the 
Hamiltonian was reduced artificially or externally. Clustering and many 
other related effects are associated with what should probably be called 
internal, spontaneous, or dynamical symmetry breaking. In the latter the 
symmetry of the underlying Hamiltonian is not disturbed, but at some point 
the wave function can be regarded as having collapsed or locked into one of 
several equivalent alternatives. This is a touchy point since this collapse 
cannot be brought about solely by Schr6dinger dynamics. At some point a 
projection or "measurement" must be invoked. In the end the symmetry 
analysis and quantum mechanics must be made to produce localized 
wavepacket states that have "permanently" (for neglible tunneling) lost some 
of the symmetry they had before they were born. Something like this is need 
in order that a classical world can make its appearance. All classical entities 
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which we so take for granted such as nuclei, atoms, molecules, or chemical 
physicists must each have given up a considerable amount of symmetry in 
order to exist. 

To understand the symmetry analysis for either type of symmetry 
breaking let us return to the C 4 Zeeman example. A well-known correlation 
exists between the octahedral representations and those of its subgroup C4. 
Let us label the C 4 representations using azimuthal quanta-modulo-four, i.e., 
[04, 14, 24, 34}. For example, the T~ representation is correlated with m = 
1 = 1 4 ,  m = 0 = 04, and m = - 1  = 34 according to Zeeman splitting. The T 1 

correlation is recorded in the T 1 row of the C 4 correlation table in Fig. 5 
along with the other O representations. The rows of C 2 and C 3 tables provide 
similar correlations appropriate for the Zeeman-type applied symmetry 
breaking. 

The remarkable thing about these tables is that the columns provide the 
necessary correlations for the clusters and spontaneous symmetry breaking. 
For example, the 04 column in Fig. 5 contains the cluster (AITtE). 
Whenever the azimuthal angular quantum number associated with a given 
quantizing C4 trajectory is 04 (i.e., zero-modulo-four) then the (A1T1E) 
cluster will be associated with that trajectory. This happens in Figs. 3 and 4 
for K 4_~ 36, 32, 28, 24 .... and in Fig. 1 for K 4 '~  88 ,  84 .... etc. For odd values 

0 s 15 2 3 

A I I " ! 
A2 I "1 
E I 
T I I 

T 2 I 

J 

c2 
02 12 

A2 

E 
T I I 2 

h 

Jt 

04 14 2~, :54 

A~ I 
2 

I 
T / 1 t I 

5 I I 

Fig. 5. Symmetry correlations for octahedral symmetry species and those of subgroups C3, 
C z,  and C 4 (after Ref. 13). The subgroups are possible symmetries for classical trajectories on 
octahedral RE surface. The columns of each table give the number of  each octahedral species 
involved in a particular type of cluster in  Figs. 3, 4, 8, or 9. An XY 6 molecule is sketched 
rotating approximately as it would for each of the three subgroups. (Precessional motion is 
not  being shown.) 
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of the azimuthal quantum number on C 4 trajectories the 14 o r  3 4 cluster 
(T 1T2) appears. The C4 clusters correspond to the classical picture of S F  6 

rotation sketched above the C4 table. Similar analysis applies to the C 3 
clusters using the C 3 table in Fig. 5. Examples of C 2 clusters will be shown 
in Section 5. Since the twofold axes in Figs. 2 and 3 contain saddles and 
separatrices, clustering is impossible there. 

This symmetry analysis of clusters is based upon the theory of induced 
representations. (24~ There are many new applications of this theory, but 
possibly none so prevalent and directly observable as in the rotational 
spectra of common polyatomic molecules. We briefly consider another 
application which helps to derive nuclear spin and hyperfine properties. 

4. SYMMETRY ANALYSIS FOR NUCLEAR SPIN EFFECTS OR 
HYPERFINE STRUCTURE 

A polyatomic molecule such a s  SF 6 or CsH 8 can be regarded as 
undergoing spontaneous symmetry breaking in order to achieve its classical 
structure and cubic symmetry. Without this classical structure there is a 
much higher symmetry which includes the arbitrary interchange of the iden- 
tical nuclei. The permutational symmetry S 6 of six identical F nuclei has 
6! = 720 operations and is 30 times larger than the cubic rotation group O, 
which has only 24 rotations. This corresponds to 30 equivalent choices for 
classical valleys into which the nuclear configuration could finally collapse 
in order to make a stable S F  6 molecule. The eight H nuclei must choose 
from 1680 equivalent" final configurations around a cubic C 8 frame even if 
that frame is already established. 

The correlation between the local cubic O symmetry representations 
and the much higher S 6 or S 8 representations is analogous to the correlation 
between Ca symmetry and O representations in rotational cluster analysis. 
Table I is partial set of correlation tables appropriate for spin-l/2 nuclei F 
and H for $4, $6, and S 8 correlations with tetrahedral (T) and cubic (O) 
symmetry of XY 4, XY 6, and XY 8 molecules, respectively. The S n represen- 
tations are associated with Young spin tableaus which label the states of 
total nuclear spin ( I = 0 ,  1,2,...) allowed by the Pauli exclusion 
principle. (16,23) 

One notes that each O species is correlated with a supercluster of 
different nuclei spin states. For example, a T 1 state of cubane (C8H8) is 
correlated with five multiplets of total nuclear spin I = 1 and one each of 
spin I =  2 and 3 or 27 states altogether. T 2 is correlated with two I =  0 
singlets, three each of I = l  and I = 2  and one I = 3  septet or 33 states 
altogether. This explains the relative intensity values 27 and 33 written above 
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Table I. Correlation between Tetrahedral or Cubic Representations and 
Pauli-AIIowed Total Nuclear Spin Quanta / = 0, 1 ..... 4 
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the T~ and T z lines in Pine's spectrum in Fig. 4. (Note: T means the same 
asF.)  

The absorption peaks associated with clusters have relative intensities 
which are the sums of those of their constituents. For example, the (T 1T2) 
clusters have relative intensity (27 + 3 3 = 6 0 ) .  However, the effect of 
clustering and related rotational dynamics on spin states is much more subtle 
than this. As the cluster splitting or S becomes smaller the nature of the 
nuclear spin state may be drastically altered. Symmetry species which 
normally are prohibited from mixing can be strongly mixed and total nuclear 
spin (I) may no longer be a good quantum number. This can happen 
whenever the superfine splitting is comparable to or less than the hyperfine, 
i.e., less than about 20 kHz. 

Since the superfine splitting drops exponentially according to (2.12) 
there can be many clusters in which hyperfine mixing of species plays a 
major role. These are called case  2 clusters in Fig. ld. It is clear that many 
case2 clusters exist. Using extraordinary laser techniques Christian 
Bord~ (3'25'26) has observed many examples of hyperfine mixing in case 2 
clusters in SF 6. Jacques Bord~ (25'2~ has verified the effects in detailed 
computer studies. These experiments open a new era in the study of 
molecular structure and dynamics. 

The dynamics of nuclear spins in the presence of nonlinear rotational 
dynamics needs to be analyzed in more detail. The detailed spectra of strong 
case 2 clusters as well as borderline case 1-case 2 clusters need to be 
understood. Preliminary studies include the use of case 1-+ 2 correlation 
diagrams such as Fig. 6, and approximate quantum models of the resulting 
energy levels. ~4) The resulting spectral patterns are called superhyperfine 
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structure in Fig. le  and should lead to many interesting effects involving 
nuclear spin-rotation coupling and RE surface dynamics. 

We consider now some related effects involving some different kinds of 
RE surface dynamics and vibration-rotation coupling. 

\ 
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Fig. 6. S F  6 hyperfine structure within a n  (A2T2E) cluster (after Ref. 14). The hyperfine 
multiplets associated with A2, 7"2, and E are sketched on the right-hand side. (They follow 
from Table Ib.) As the RE surface tunneling amplitude S vanishes the three multiplets are 
drawn together and the symmetry species become mixed. The resulting spectrum is called 
superhyperfine or case 2 structure. (See also Fig. ld and e.) 
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5. OTHER TYPES OF RE SURFACES AND SPECTRAL PATTERNS 

We consider now some different possibilities for RE surfaces and their 
resulting spectral patterns. These represent only a few of the many  interesting 
effects that can be discovered using RE surface pictures and they should be 
observable in laser spectra of  polyatomic  molecules. 

5.1. Fourth- and Sixth-Rank Tensor Combinations 

The RE surfaces and spectra of  the combinat ion tensor 

T4'6(v) = 7 ~4 cos v + i? 6 sin v (5.1) 

will be displayed for a range of values for the mixing parameter  v = 0, 
7r/6,..., 7r. The first term involves a normalized fourth-rank tensor propor- 
tional to the one given in Eqs. (1. i) ,  (2.2), and (2.5): 

~]~4 = ( 7 / 1 2 ) 1 / 2 [ T 4  jr_ (5/14)1/2(T44 + V4n)] 

= (21/21~ cos4/~ - 30 cosZfl + 5 sin4fl cos 4y + 3) (5.2) 

The second term is a normalized sixth-rank tensor which also has cubic 
symmetry :  

~6 = (1/8)~/2[T6 _ (7 /2)~ /2(T  ~ + T64)] 

= (13/213701/2(231 cos6fl  -- 315 cos~fl + 105 cos2fl  

- 21 sin 4 0(11 cos 2 0 - -  1) cos 4~- -  5) (5.3) 

One may  plot each T 4'6 for a given v as an RE surface as was done in 
Fig. 2 for the v = 0 case. (27) However,  plotting in the spherical geometry can 
make it difficult for one's  eye to spot saddle points or other flat regions. 
Therefore we shall borrow a technique from world maps  and plot the 
rotational energy along the z axis above a stereographic projection of 
roughly half  the unit sphere. The x and y coordinates on the projected plane 
will be given in terms of the polar  angles fl and y by 

x = tan( f l /2)  cos(y) 
(5.4) 

y = tan(fl /2) sin(~) 

Thus the equator (fl = 7r/2) becomes a unit circle in the x - y  plane. (In fact, 
any circle on the sphere is mapped into a circle or straight line on the x - y  
plane.) 

The T 4'6 RE surfaces are plotted as functions of  x and y (--1.0 ~< x, 
y~< 1.0) for several values of  v in Fig. 7. The plots are 3D (three- 

822/36/5-6-17 
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Fig. 7. Rotational energy (RE) surfaces for mixed tensor T4"6= T 4 COS V + T 6 sin v for 
various values of mixing angle v. Surface coordinates are projected according to Eq. (5.4) onto 
x and y base plane. Drawings are 3D stereo pairs, and should be so viewed to see axis 
positions. (a )The  v = 0  surface corresponds to Fig. 2, ( b ) v = 0 . 4 1 3 8 ( ~ / 6 ) ,  ( c )v=2(~z /6 ) ,  
(d) v = 4(n/6) ,  (e) v = 4 .6478(n/6) ,  (f) v = 7r. 
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dimensional) stereo drawings which can be viewed by relaxing the eyes so 
that the left and right eyes see the left and right images, respectively. A 
stereo viewer or a card held between the drawings may help one enjoy the 
3D views more easily. One should first examine the v = 0 drawing in Fig. 7a 
which represents the top half of the RE surface in Fig. 2. Note the peaks on 
fourfold axes, valleys on threefold axes, and saddles on twofold axes. The 
contours of Fig. 2 are not reproduced on Fig. 7, but one can see approx- 
imately where they would go since the constant energy surfaces in Fig. 7 are 
planes parallel to x and y. 

Next one should examine the v --- 2.0(n/6) surface in Fig. 7c. It is clear 
that the twofold axes no longer have saddle points but have developed fairly 
deep valleys. This means that some topography lines or classical 
trajectgories will encircle the twofold axes, and that T 4'6 operators with 
approximately the same v will have twofold clusters. These are of the form 
(A1ET ~ T 2 T2) or (A 2ET~ T~ T2) obtained from the columns of the C 2 table in 
Fig. 5, and each have 12 rotational sublevels altogether. 

The eigenvalues of T 4'6 for J =  30 are plotted as a function of v 
(0 ~ v ~< n) in Fig. 8 below. At v = 0 the spectrum has the same form as in 
Fig. 3, but it quickly changes as v varies. Clusters trade species and form 
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(u) (~) ~) (e) 
o o o 1.o 20 ao  40 80 80 

v in  u n i t s  of rr/6 

Fig .  8. E n e r g y  levels for  mixed  t enso r  T 4'6 = T 4 cos  ~) q- T 6 sin v as a func t ion  o f  mix ing  

ang le  v for  J = 30. (Af ter  Ref.  27. )  T h e  v = 0 or  v = 7r levels are  s imi la r  to  those  in Fig ,  3. The  

a r r o w s  ind ica te  the  levels c o r r e s p o n d i n g  to  R E  su r faces  in F igs .  7b, c, d, a n d  e, respect ive ly .  
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new clusters including a pair of  twofold clusters that go from about 
v = 0.4(7r/6) to about v = 4.6(rc/6) in the lower center portion of  Fig. 8. The 
superfine structure of  the upper one is visible without magnification. Twelve 
states in five levels are crowded together in these clusters. 

The surfaces at the values v = 0.414(lr/6) and v = 4.648(~z/6) where the 
twofold clusters begin and end are shown in Fig. 7b or e. These are values 
for which the twofold energy equals the energy at the three or fourfold axes, 
respectively. From Fig. 8 one can see that the energy spectrum is dominated 
at these points by four- or threefold clusters, respectively. Finally, one should 
note that the v = 7r surface in Fig. 7f is just an upside-down version of  the 
v = 0 surface in Fig. 7a. 

The pattern of  changing geography and eigenvalues seen in Figs. 7 and 
8 wilt be similar to that which occurs in a much more complicated Coriolis 
coupling problem discussed in the following section. 

5.2. Scalar and Tensor Coriolis Combinations 

The fundamental v 3 and v 4 vibrational states are each spanned by a 
dipole active triplet of  vectorlike base states {r of  vibrational 
angular momentum 1 = 1 and cubic symmetry species T I . The coupling of  
the vibrational angular momentum l with the rotational momentum R yields 
a total angular momentum J =  R + l which is conserved. In SF 6 and other 
similar molecules most of  the angular momentum coupling or Coriolis effects 
are well described by the following Hamiltonian(28): 

H v = v + BY 2 Jr- 2B~J �9 l + t~24[v2(rotation X vZ(vibration)]] 1 (5.5) 

where the first two terms determine the vibrational and rotational energy, 
and the second two terms determine the vibrat ion-rotat ion or Coriolis 
interactions. 

We shall compare the spectra and RE surface dynamics of  the 
interactions by varying the coefficient fl~ (B-zeta) of  the scalar Coriolis 
operator for a fixed value of  the tensor coefficient t224. We shall once again 
treat the angular momentum as a semiclassical quantity which precesses 
around topgraphy lines on an RE surface. The problem is: What  RE 
surface? 

This is a new approach to Coriolis effects, but a useful analogy can be 
made with older problems. Jahn, Teller, and Renner studied electron- 
vibration vibronic interactions involving two, three, or more electronic basis 
functions {01, r 43 .... } with the same or nearly the same energy. As is well 
known this degeneracy signals a possible "breakdown" of the Born-Op-  
penheimer approximation and the whole system of  electrons and vibrating 
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nuclei can become "floppy." To study the dynamics of such a system one 
constructs n multiple interpenetrating potential energy (PE) surfaces by 
diagonalizing an effective Hamiltonian in the electronic basis {01, ~,..., ~,} as 
a function of vibrational coordinates. 

To study the Coriolis dynamics we shall similarly diagonalize an 
effective Hamiltonian in the body-defined basis 

{[//1) = 01, I~V') = O0, 117_,) = 0_it  
of vibrational functions and plot the three resulting functions of the angular 
momentum direction angles {fl, 7} or the projected {x, y} coordinates given 
by (5.4). This will yield three sometimes interpenetrating RE surfaces which 
will provide information about Coriolis dynamics and spectra. 

The details of the derivation of the effective Hamiltonian is mostly 
described in Ref. 28 and cannot be repeated here owing to lack of space. The 
result in the 1172;} body basis is the following (here we ignore v and B J2): 

I//1) I "~') I n _ , )  

3cos2fl-1 -2 V/2 sinfl cosfl(cos y- isin 7) sin2fl(6cos2y+i4sin2y) 
(H)body=2t224 J2 CC. --2(3 COS2fl-- I) 2 , ~  sinflcosfl(cos y-isin y) ~ 

cc. cc. 3 cos2fl - 1 ] 

+ 2B~ cc. 0 sinfl(cosy-isiny)/X/2 
CC. CC, --COSj~ 

(5.6) 

For many purposes it is more convenient to have this matrix in the 
laboratory-defined basis. We shall designate the lab basis by 

{IP)=IN=J + 1), IQ)=IR =J), IR )=IR=J- -  1)} 

in correspondence with the P, Q, and R branches of a v spectrum (see 
Fig. la) which result from transitions to these states when B~ is much larger 
than t224. In this representation the scalar Coriolis operator J .  l is diagonal, 

] P) [Q) IR) 

0 --2B 

\ /Hp,  Hee HeR ) 

X [ H *  e Hoe HeR 

H* H~R HR. 

q- 2t224 J2 

(5.7) 
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and the tensor Coriolis components are given as follows: 

Hep = HRR = (35 cos 4/? -- 30 COS 2/? + 5 sin 4/? cos 4y + 3)/4 

= --HoQ/2 (5.8) 

Heo - = 5 sin/?[7 cos 3/? -- 3 cos/? -- sin z/?(cos/? cos 4y + i sin 4y)]/2 V/2 

= - H e ,  (5.9) 

HeR = 5[--7 cos 4/? + 8 cos2/? + (1 -- cos 4/?) cos 4y 

+ 2i cos/? sin z/? sin 4y -- 1 ]/4 (5.10) 

One should note that the diagonal components (5.8) have precisely the 
form of the ( l=  0) ground level RE surface defined by (2.5). The excited 
(l = 1) level RE surfaces consist of three copies of ground level RE surface 
with the middle (Q) one upside down and twice as deep for large B~. Then 
the rotor angular momentum R is mostly conserved and provides a good 
quantum number R = J q- 1, J, or J -  1 for well separated P, Q, and R 
branches. The vibrational momentum l is defined by its component on the 
lab fixed J vector. 

It is interesting to see what happens when B~ is small or zero. A plot of 
the resulting spectrum for J =  60 is shown in Fig. 9a andb. Figure 9b 
presents a magnified view of the neighborhood of B~ = 0. 

One should note that the upper branch of level trajectories in Fig. 9b 
has a pair of triangular regions which contain twofold clusters for B~ > 0 
and IB~I ~< 1.2. Each triangular region is surrounded on its upper side by 
regions containing mostly threefold clusters on one side and mostly fourfold 
clusters on the other side and separatrix regions in between. In other words, 
each triangular region in Fig. 9b resembles the triangular region the middle 
of Fig. 8 which is due to sixth-rank tensors having produced stable twofold 
clusters. This was quite surprising to find in the spectra of a fourth-rank 
tensor which generally has only unstable saddle points on twofold axes. How 
then can stable classical rotation be established on a twofold axis for 
small Bff? 

The 3D plots of RE surfaces in Fig. 10 show clearly that stable valleys 
or peaks exist on twofold axes for low values of B~. The Coriolis interaction 
can stabilize an otherwise unstable motion just as a magnetic field can 
stabilize orbits in a quadrupole ion trap. Comparison of the top surface in 
the first two plots in Fig. 10 (for B ~ =  0.0 and B ~ =  0.5) reveals that the 
latter has developed valleys on the twofold axis. The top surface for B~ = 0.0 
resembles the v = 4.6(7r/6) surface in Fig. 7e and supports threefold clusters 
only. The middle surface for Bff= 0.5 (Fig. 10b) has the same shape only 
upside down, and it corresponds to the lower limit for stable twofold 
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Fig. i1. Rotational energy level clusters for a rigid asymmetric top for J =  10 are 
associated with RE surface trajectories (see Ref. 13). Correlations between the asymmetric top 
symmetry D 2 and three dynamicai subgroups Cz(x ), Cz(y ), and C2(z ) are shown below the 
level-cluster diagram. (Recall analogous Figs. 3 and 5 for octahedral clusters.) 
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precession on this surface. The top surface with B ~ =  1.0 (Fig. 10c) has a 
shape similar to the v=O.41(n/6) surface in Fig. 7b. It supports only 
fourfold precession and corresponds to the upper limit for twofold precession 
on the top surface. However, at B~ = 1.0 the twofold clusters are still very 
strong in the middle region as seen in Figs. 9b or 10c. 

By comparing Figs. 9 and 10 for various values of B~ it is seen that 
very complicated spectral patterns are described quite simply and accurately 
by the RE surface pictures even in the presence of resonant Coriolis mixing 
at small B~. Furthermore, each point on the surface corresponds to a 
particular eigenstate combination of vibrational states {I//1)127)I//_1)} or 
else {IP)IQ)IR)} �9 The former are body-defined angular momentum states 
which will be more convenient bases to use in the limit of B~ = 0, i.e., when 
the Born-Oppenheimer approximation for vibrational wavefunctions is valid. 

Other interesting points of comparison between spectra in Fig. 9 and 
RE surfaces in Fig. 10 include B~ ~ 1.3 when the lower surface is almost 
flat, and crossover points or conical intersections at B{ = 2.0 and 3.0. The 
physical interpretation of these patterns and dynamics must await future 
work. 

5.3. Twofold Clusters in Asymmetric Tops 

As a final example we show the J =  10 energy levels and RE surface 
trajectories for an asymmetric rigid top in Fig. 11. This example shows that 
absence of high symmetry does not necesarily prevent the existence of cluster 
patterns and semiclassical analysis. The details of the asymmetric top 
analysis are discussed in Ref. 13 and are based upon earlier work by 
King (29) and Colwell, Handy, and Miller. ~3~ The twofold or C2(x) and C2(Y) 
clusters in Fig. 11 are analogous to the C 3 and C 4 clusters for the octahedral 
symmetry in Fig. 3. The C2(y ) clusters are impossible when the y-axis sits on 
saddle points. SF 6 (or C 8 H8) and asymmetric tops represent two extremes in 
molecular symmetry. Between these extremes there shjould be a broad range 
of molecules with fascinating examples of spectral patterns and rovibronic 
dynamics. A clear picture of this dynamics can be obtained from analysis of 
rotational energy surfaces. 
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